منابع مشابه
Finite $p$-groups and centralizers of non-cyclic abelian subgroups
A $p$-group $G$ is called a $mathcal{CAC}$-$p$-group if $C_G(H)/H$ is cyclic for every non-cyclic abelian subgroup $H$ in $G$ with $Hnleq Z(G)$. In this paper, we give a complete classification of finite $mathcal{CAC}$-$p$-groups.
متن کاملFinite groups all of whose proper centralizers are cyclic
A finite group $G$ is called a $CC$-group ($Gin CC$) if the centralizer of each noncentral element of $G$ is cyclic. In this article we determine all finite $CC$-groups.
متن کاملAdditive Bases and Extremal Problems in Groups, Graphs and Networks
Bases in sets and groups and their extremal problems have been studied in additive number theory such as the postage stamp problem. On the other hand, Cayley graphs based on specific finite groups have been studied in algebraic graph theory and applied to construct efficient communication networks such as circulant networks with minimum diameter (or transmission delay). In this paper we establi...
متن کاملWeighted Sequences in Finite Cyclic Groups∗
Let p > 7 be a prime, let G = Z/pZ, and let S1 = ∏p i=1 gi and S2 = ∏p i=1 hi be two sequences with terms from G. Suppose that the maximum multiplicity of a term from either S1 or S2 is at most 2p+1 5 . Then we show that, for each g ∈ G, there exists a permutation σ of 1, 2, . . . , p such that g = ∑p i=1(gi · hσ(i)). The question is related to a conjecture of A. Bialostocki concerning weighted...
متن کاملMinimal Zero Sequences of Finite Cyclic Groups
If G is a finite Abelian group, let MZS(G, k) denote the set of minimal zero sequences of G of length k. In this paper we investigate the structure of the elements of this set, and the cardinality of the set itself. We do this for the class of groups G = Zn for k both small (k ≤ 4) and large (k > 2n 3 ).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Number Theory
سال: 1992
ISSN: 0022-314X
DOI: 10.1016/0022-314x(92)90088-7